Описание:
Выпуск источников питания серии HWS японское подразделение корпорации TDK-Lambda начало в 2003 г. в ответ на потребность рынка в компактных промышленных источниках питания разных номиналов, имеющих высокий запас надежности. Серия HWS сегодня — это линейка источников питания с широким диапазоном мощностей (15…1800 Вт) стандартного промышленного ряда напряжений, которая продолжает расширяться. Так, в 2005 г. появились модели HWS80, HWS300, HWS600 и HWS1500, в середине 2007 г. появилась линейка с трехфазным входом HWS1800T, а в конце 2007 г. — источник питания мощностью 1000 Вт. Существующие модели представлены в таблице 1, а их внешний вид — на рисунке 1.
Модель Вых. напряжение | 3 В | 5 B | 12 В | 15 В | 24 В | 48 В |
HWS15 | 3 A/10 Вт | 3 А/15 Вт | 1,3 А/15,6 Вт | 1 А/15 Вт | 0,65 А/15,6 Вт | 0,33 А/15,8 Вт |
HWS30 | 6 А/20 Вт | 6 А/30 Вт | 2,5 А/30 Вт | 2 А/30 Вт | 1,3 А/31,2 Вт | 0,65 А/31,2 Вт |
HWS50 | 10 А/33 Вт | 10 А/50 Вт | 4,3 А/51,6 Вт | 3,5 А/52,5 Вт | 2,2 А/52,8 Вт | 1,1 А/52,8 Вт |
HWS80 | 16 А/52,8 Вт | 16 А/ 80 Вт | 6,7 А/80,4 Вт | 5,4 А/81 Вт | 3,4 А/81,6 Вт | 1,7 А/81,6 Вт |
HWS100 | 20 А/66 Вт | 20 А/100 Вт | 8,5 А/102 Вт | 7 А/105 Вт | 4,5 А/108 Вт | 2,1 А/100,8 Вт |
HWS150 | 30 А/99 Вт | 30 А/150 Вт | 13 А/156 Вт | 10 А/150 Вт | 6,5 А/156 Вт | 3,3 А/158,4 Вт |
HWS300 | 60 А/198 Вт | 60 А/300 Вт | 27 А/324 Вт | 22 А/330 Вт | 14 А/336 Вт | 7 А/336 Вт |
HWS600 | 120 А/396 Вт | 120 А/600 Вт | 53 А/636 Вт | 43 А/645 Вт | 27 А/648 Вт | 13 А/624 Вт |
HWS1000 | 200 А/660 Вт | 200 А/1000 Вт | 88 А/1056 Вт | 70 А/1050 Вт | 44 А/1056 Вт | 22 А/1056 Вт |
HWS1500 | - | - | 125 А/1500 Вт | 100 А/1500 Вт | 65 А/1560 Вт | 32 А/1536 Вт |
HWS1800T | 300 А/990 Вт | 300 А/1500 Вт | 125 А/1500 Вт | 100 А/1500 Вт | 75 А/1800 Вт | 37,5 А/1800 Вт |
Для удобства использования и расширения сфер применения (кроме установки на шасси) приборы этой серии без каких-либо трудностей могут быть установлены на DIN-рейку. Для этого можно заказать специальные держатели (DIN-rail bracket). Предлагаются держатели трех типоразмеров. Для крепления приборов серий HWS15 и HWS30 применяется держатель типоразмера DIN-01; HWS50 — DIN-02; HWS80, HWS100 и HWS150 — DIN-03. Прибор жестко закрепляется в держателе, а затем устанавливается на DIN-рейку (см. рис. 2).
Особенности работы HWS/HDПоиск и выбор источника питания для жестких условий эксплуатации — актуальная проблема для любого российского разработчика, когда-либо занимавшегося проектированием аппаратуры для использования в неотапливаемых помещениях и на улице. В техническом описании подсемейства HWS/HD заявлен гарантированный старт при температуре –40°С, а рабочий диапазон температур составляет –10...85°С. Чтобы получить точное представление об особенностях запуска моделей при низких температурах, необходимо внимательно ознакомиться с имеющейся в техническом описании диаграммой пуска, представленной для каждой линейки. В качестве примера на рисунке 3 представлена кривая запуска для моделей линейки HWS100HD.
При минимальном напряжении входа и температуре –40°С источник стабильно запускается при нагрузке 30%. Если напряжение входа 170 В и выше, то старт можно произвести при выходном токе 50% от максимального. При этом некоторые рабочие параметры могут отличаться от заявленных. Например, выходные пульсации. При низкой температуре ESR (эквивалентная резистивная составляющая) электролитных конденсаторов, используемых в выходном фильтре, растет, вследствие чего растет и значение двойной амплитуды пульсаций на выходе. Время запуска также может увеличиться, особенно если преобразователь пускается под нагрузкой. Это связано с тем, что ESR входных конденсаторов также увеличивается и напряжение на них может падать, не успевая нарасти достаточно быстро, особенно в моделях, где для ограничения пускового тока применяются термисторы — элементы с обратным температурным коэффициентом. При низких температурах термистор ограничивает ток сверх меры. В более мощных моделях HWS (от 300 Вт и выше) для ограничения пускового тока используется схема, основанная на тиристоре (SCR) (см. рис. 4).
Во время начального броска тока в этой схеме накапливается уровень напряжения (около 1…2 В), достаточный для подачи сигнала-триггера на управляющий вывод тиристора. И на это время, длящееся около 10 мс, тиристор запирается, увеличивая свое сопротивление в десятки раз. После этого он ведет себя как последовательно включенный в цепь дополнительный диод. К сожалению, использование такой же схемы в моделях ниже 300 Вт нецелесообразно с точки зрения КПД.
После запуска начинается прогрев элементов, который может длиться от нескольких десятков секунд до 3 мин. Это зависит от монтажа и расположения источника в пространстве (вертикального или горизонтального), наличия другого тепловыделяющего оборудования, от вида охлаждения (конвекционное или принудительное). После этого периода источник выходит «на полную спецификацию», когда все его параметры приходят в норму, и он может отдавать нагрузке 60—70% мощности в зависимости от уровня входного напряжения. При температуре от –10°С и выше можно подключать максимальную нагрузку. При температуре, превышающей 50°С, начинается определенное снижение мощности, которое зависит от конкретной модели.
На рисунке 5 изображены скриншоты показаний осциллографа во время запуска модели HWS150HD при температуре –40°С и минимальном входном напряжении: а) холостой запуск (без нагрузки) — источник запускается стабильно; б) при нагрузке 100% — источник запускается нестабильно. Как видно из этого примера, на практике источник стартует и при полной нагрузке, но в ряде случаев пуск срывается, поэтому в спецификации заявлены более жесткие условия запуска.
ИП серии HWS/HD отличаются также тем, что их печатные платы имеют защитное покрытие Conformal Coating. Этот материал нанесен тонким слоем (в несколько десятков микрон) на печатную плату и другие компоненты, находящиеся на ней. Он защищает плату от влажности и загрязняющих примесей и таким образом предотвращает короткие замыкания, коррозию проводников и «точек соединения». Наносится покрытие обычно погружением в ванну, распылением или методом потока. На заводax TDK-Lambda практикуется в основном второй метод. В качестве материала используется лак DС1-2577 компании Dow Corning (США). Это полупрозрачный нерастворяющийся материал, основу которого составляет кремниевая смола. Более подробно его характеристики представлены в таблице 2.
Производитель | Dow Corning (США) |
Основа | Эластично-пластиковая кремниевая смола |
Время просушки (Final Cure) - ускоренный метод | 10 мин при 25°C + 10 мин при 70°C |
Внешний вид | Полупрозрачен |
Соответствие стандартам | RoHS (Европейская директива), UL 746C |
Изоляционные свойства, кВ/мм | 18 |
Нелетучие составляющие (non-VOC), % | 72 |
Температура применения, °C | -65...200 |
Содержание толуола | Присутствует |
Время просушки определяет, насколько быстро будет идти производственный процесс. Материал DС1-2577 — не самый быстросохнущий, поэтому для ускорения процесса используется особый температурный режим. Содержание нелетучих соединений — также важный параметр, т.к. он определяет расход материала. Если этот параметр находится на уровне 100%, то защитный слой не оседает и после просушки толщина покрытия остается такой же, как и при нанесении. Такие материалы действительно существуют. Тот же производитель выпускает лак марки DС3-1953, который отличается 100%-ой нелетучестью, но при этом в 2,5 раза дороже и уступает по своим диэлектрическим свойствам DС1-2577. В качестве защитного материала могут использоваться также HumiSeal 1A27NS и HumiSeal 1B73 компании Chase Corporation.
Некоторые химические составляющие, такие как толуол, при контакте с резиновой вставкой электролитических конденсаторов могут повлиять на их работоспособность. Поэтому важно выбрать правильную последовательность операций при производстве либо применять специальные прокладки-спейсеры, которые помещаются под основания конденсаторов. Крупные внешние элементы HWS также монтируются после нанесения защитного слоя. Дело в том, что температурное сопротивление слоя намного выше, чем у воздуха, поэтому процесс охлаждения таких элементов, если их покрыть, будет затруднен.
Применение защитного покрытия печатных плат еще более расширяет сферу и условия применения источников питания HWS: они могут успешно эксплуатироваться на промышленных объектах с повышенным содержанием пыли в воздухе, а также в районах повышенной влажности и в условиях морских ветров, содержащих и влагу, и соль. Источники TDK-Lambda с покрытием Conformal Coating уже используются в светодиодных вывесках на морском берегу.
ДОСТАВКА
Вы можете выбрать любой наиболее удобный способ из перечисленных ниже:
Доставка до терминала ТК «Деловые линии» осуществляется нами бесплатно.
ОПЛАТА
Мы принимаем оплату:
Цены на поставляемые нами товар всегда ниже, чем у наших конкурентов.
Условия гарантийного обслуживания
Гарантия не распространяется на ущерб, причиненный другому оборудованию, работающему вместе с данным изделием.