Лист № 1 Всего листов 6

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы неавтоматического действия ЕМ

Назначение средства измерений

Весы неавтоматического действия ЕМ (далее – весы) предназначены для статических измерений массы различных грузов.

Описание средства измерений

Принцип действия весов основан на преобразовании деформации упругого элемента весоизмерительного тензорезисторного датчика (далее – датчик), возникающей под действием силы тяжести объекта измерений, в аналоговый электрический сигнал, пропорциональный его массе. Этот сигнал подвергается аналого-цифровому преобразованию, математической обработке электронными устройствами весов с дальнейшим определением значения массы объекта измерений. Результаты взвешивания выводятся на дисплей индикатора весов.

Конструктивно весы состоят из грузоприемного устройства (далее $-\Gamma\Pi Y$), грузопередающего устройства, весоизмерительного устройства, включающего в себя датчик и индикатор.

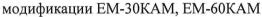
Весы выпускаются в следующих модификациях: ЕМ-30КАМ, ЕМ-60КАМ, ЕМ-60КАL и ЕМ-150КАL, которые отличаются максимальной (Мах) и минимальной (Міп) нагрузками, действительной ценой деления (шкалы) (d) и поверочным интервалом (e), а также габаритными размерами ГПУ.

Структура условного обозначения весов:

$$\frac{\text{EM}}{1}$$
 $\frac{\text{COO}}{2}$ $\frac{\text{KAO}}{3}$

- 1 обозначение типа весов;
- 2 индекс (2 или 3 знака) выбирается из ряда в зависимости от максимальной нагрузки весов:
 - 30 (для 30 кг), 60 (для 60 кг), 150 (для 150 кг), 300 (для 300 кг);
 - 3 индекс, обозначающий габаритные размеры ГПУ:
 - М для ГПУ с габаритными размерами (350×300) мм;
 - L для ГПУ с габаритными размерами (500×400) мм.

Питание весов осуществляется от сети через адаптер или от аккумуляторной батареи.


Общий вид весов представлен на рисунке 1.

Весы снабжены следующими устройствами (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1-2011):

- автоматическое устройство установки на нуль (Т.2.7.2.3);
- полуавтоматическое устройство установки на нуль (Т.2.7.2.2);
- устройство первоначальной установки на нуль (Т.2.7.2.4);
- устройство слежения за нулем (Т.2.7.3);
- устройство установки по уровню (Т.2.7.1);
- устройство тарирования (выборки массы тары) (Т.2.7.4).

Весы оснащены интерфейсом RS-232C для связи с периферийными устройствами (например, персональный компьютер, принтер).

модификации EM-60KAL, EM-150KAL

Рисунок 1 – Общий вид весов

Маркировка весов производится на маркировочной табличке, разрушающейся при снятии и закрепленной на поверхности корпуса весов, на которую наносится следующая информация:

- обозначение типа весов;
- максимальная нагрузка (Мах);
- минимальная нагрузка (Min);
- действительная цена деления (шкалы) (d) и поверочный интервал (e);
- верхняя граница диапазона устройства выборки массы тары (Т-);
- серийный номер весов (наносится отдельной наклейкой);
- класс точности;
- знак утверждения типа;
- наименование предприятия изготовителя;
- дата производства весов.

Пример маркировочной таблички представлен на рисунке 2.

Весы неавтоматического действия **EM-30KAM** Min = 0.2 кг, Max = 30 кг, d = 10 г, e = 10 г Класс точности: (III) Диапазон рабочих температур: от -10°C до +40°C 187-242 В, 49-51 Гц, Т, кг: 100 % от Мах Изготовитель «А&D Company, Limited», Япония Произведено в КНР. Производственная площадка «A&D Electronics (Shenzhen) Co., Ltd.», КНР Импортёр: ООО "ЭЙ энд ДИ РУС" www.aandd.ru

Рисунок 2 – Пример маркировочной таблички

Дата производства:

Схема пломбировки весов от несанкционированного доступа, место нанесения знака поверки приведены на рисунке 3.

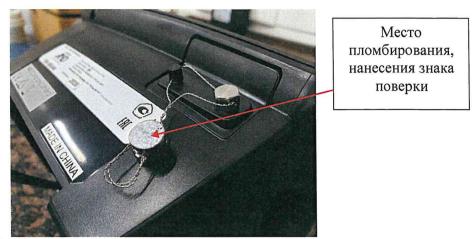


Рисунок 3 — Схема пломбировки от несанкционированного доступа, место нанесения знака поверки

Программное обеспечение

Программное обеспечение (далее $-\Pi O$) весов является встроенным, используется в стационарной (закрепленной) аппаратной части с определенными программными средствами.

Идентификационным признаком ПО служит номер версии, который отображается на дисплее индикатора весов.

 ΠO не разделено на метрологически значимую и незначимую часть. Метрологически значимым является все ΠO .

ПО не может быть модифицировано или загружено через какой-либо интерфейс или с помощью других средств после принятия защитных мер.

Защита ΠO и измерительной информации от преднамеренных и непреднамеренных воздействий соответствует требованиям ΓOCT OIML R 76-1-2011 п. 5.5.1 «Устройства со встроенным программным обеспечением». ΠO не может быть модифицировано или загружено через какой-либо интерфейс или с помощью других средств после принятия защитных мер.

Кроме того, для защиты от несанкционированного доступа к параметрам юстировки и настройки, а также измерительной информации весы пломбируются согласно рисунку 3.

Идентификационные данные ПО приведены в таблице 1.

Уровень защиты ПО от непреднамеренных и преднамеренных воздействий в соответствии с P 50.2.077-2014 – «высокий».

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	_
Номер версии (идентификационный номер) ПО, не ниже	P-1.xx
Цифровой идентификатор ПО	-
Примечание: х принимает значения от 0 до 9.	

Метрологические и технические характеристики

Метрологические характеристики весов приведены в таблицах 2 и 3, основные технические характеристики весов – в таблице 4.

Таблица 2 – Метрологические характеристики весов

	Значе	ние для модификации	
Наименование характеристики	EM-30KAM	EM-60KAM,	EM-150KAL
		EM-60KAL	
Класс точности по ГОСТ OIML R 76-1-2011	Средний (III)		
Максимальная нагрузка (Мах), кг	30	60	150
Минимальная нагрузка (Min), кг	0,2	0,4	1
Поверочный интервал (е) и действительная цена	10	10 20	50
деления (шкалы) (d) , $e = d$, г		10 20	
Число поверочных интервалов (п)	3000	3000	3000

Таблица 3 — Метрологические характеристики весов

Наименование характеристики	Значение
Верхняя граница диапазона устройства выборки массы тары (Т), кг	100 % от Мах
Пределы допускаемой погрешности устройства установки на нуль, г	±0,25e
Показания индикации массы, г, не более	Max + 9 <i>e</i>
Диапазон установки на нуль и слежения за нулём, % от Мах, не более	4
Диапазон первоначальной установки на нуль, % от Мах, не более	20
Пределы допускаемой погрешности для нагрузки <i>m</i> (mpe) при поверке	
(в эксплуатации):	
$- Min \le m \le 500e$	$\pm 0.5e \ (\pm 1.0e)$
$-500e < m \le 2000e$	$\pm 1e \ (\pm 2,0e)$
$-2000e < m \le \text{Max}$	±1,5e (±3,0e)

Пределы допускаемой погрешности весов после выборки массы тары соответствуют пределам допускаемой погрешности для массы нетто.

Таблица 4 — Основные технические характеристики весов

Наименование характеристики	Значение
Условия эксплуатации:	
- диапазон температуры окружающей среды, °С	от -10 до +40
- относительная влажность окружающего среды, %	от 30 до 85
Параметры сетевого питания (через адаптер):	
- напряжение переменного тока, В	от 187 до 242
- частота переменного тока, Гц	от 49 до 51
Напряжение электропитания от источника постоянного тока, В	6
Габаритные размеры (длина×ширина×высота), мм, не более:	
- EM-30KAM, EM-60KAM	560×300×450
- EM-60KAL, EM-150KAL	710×400×750
Масса, кг, не более:	
- EM-30KAM, EM-60KAM	4
- EM-60KAL	7
- EM-150KAL	9,5

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и любым технологическим способом на маркировочную табличку, расположенную на корпусе весов.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерении

Наименование	Обозначение	Количество
Весы неавтоматического действия	EM	1 шт.
Сетевой адаптер		1 шт.
Кронштейн для крепления индикатора	-	1 шт.
Руководство по эксплуатации		1 экз.

Поверка

осуществляется по ГОСТ OIML R 76-1–2011 «Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания», приложение ДА «Методика поверки весов».

Основные средства поверки:

- рабочие эталоны единицы массы 4-го разряда по приказу Росстандарта от 29.12.2018 г. № 2818 «Об утверждении Государственной поверочной схемы для средств измерений массы» гири номинальной массой от 1 г до 100 кг класса точности M_1 по ГОСТ OIML 111-1-2009. «Гири классов E_1 , E_2 , F_1 , F_2 , M_1 , M_{1-2} , M_2 , M_{2-3} и M_3 . Метрологические и технические требования».

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки в виде оттиска поверительного клейма наносится на пломбу, согласно рисунку 3 и на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к весам неавтоматического действия EM

Приказ Росстандарта от 29.12.2018 г. № 2818 «Об утверждении Государственной поверочной схемы для средств измерений массы»

ГОСТ OIML R 76-1–2011 «Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»

Техническая документация изготовителя

Light of the Parket of

Изготовитель

«A&D Company, Limited», Япония

Заявитель

Общество с ограниченной ответственностью «ЭЙ энд ДИ РУС» (ООО «ЭЙ энд ДИ РУС»)

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр в области метрологии»

целях утверждения типа № RA.RU.311390 от 18.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии Подлинник электронного документа, подписанного ЭП, хранится в системе электронного документооборота Федеральное агентство по техническому регулированию и метрологии.

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат: 01804FD20037AC92B24BBE37DDE2D3F374 Кому выдан: Кулешов Алексей Владимирович Действителен: с 15.09.2020 до 15.09.2021 А.В.Кулешов

М.п

«20» мая 2021г.