Оперативный и непрерывный контроль качества водной среды

Согласно нормативным документам для различных контролирующих служб, мониторинг параметров водных сред осуществляется либо с установленной периодичностью (оперативно), либо ведется постоянно (непрерывно).

К оперативному контролю относятся также разовые измерения (контроль работы стационарных приборов, нерегламентируемые измерения).

Для **оперативного** контроля предназначены портативные (переносные) приборы, для **непрерывного** – стационарные.

Портативные, настольные и стационарные анализаторы

Портативные — переносные приборы небольшого размера для дискретных измерений. Измеренные значения либо фиксируются пользователем вручную (записываются в журнал регистрации), либо сохраняются в памяти прибора (работа с блокнотом). Могут использоваться в качестве настольных.

Настольные приборы имеют больший по размеру корпус и размещаются на столе, где и производятся измерения. Для транспортировки и использования в «полевых» условиях не предназначены.

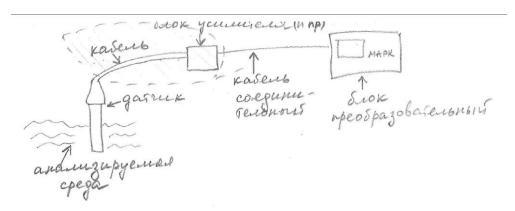
Блок преобразовательный **стационарных** приборов крепится на вертикальной поверхности, измерительная часть подключается к процессу, вывод данных осуществляется на внешние регистрирующие устройства. Перенос блока преобразовательного на другое место не предполагается, датчики же могут устанавливаться на удалении различными способами.

настольный

стационарный

Общая архитектура анализаторов

Все анализаторы производства ВЗОР имеют единую структуру.


Измерительная часть (датчик, электрод) непосредственно контактирует с измеряемой средой.

В некоторых стационарных приборах измерительная часть еще включает отдельно вынесенный блок усилителя (или иные конструктивные элементы, как то: коробку клеммную, токовый выход), на который передается сигнал от датчика/электрода.

Если блок усилителя (и пр.) представляет собой отдельное устройство, располагаемое обязательно в сухой зоне, то предусматривается удлинение кабеля между датчиком и блоком усилителя (и пр.).

Блок преобразовательный получает и индицирует показания от измерительной части. К одному блоку преобразовательному могут быть подключены две измерительные части.

Кабель соединительный служит для обеспечения связи и передачи данных от измерительной части к блоку преобразовательному.

^{*} часть из кабеля и блока усилителя (и пр.) может отсутствовать

Погружной, проточный, магистральный способ измерения

Погружной способ измерения — при котором датчик/электрод погружается в открытую емкость. Данный способ контакта измерительной части со средой недопустим при измерениях характеристик «сверхчистых» вод (с электропроводимостью менее 3мкСм/см), поскольку из-за контакта среды с воздухом меняет состав пробы.

Проточный способ измерения применяется на объектах энергетики. Подключение к потоку пробы осуществляется через систему пробоотборников, после анализа вода уходит на слив.

Магистральный способ измерения подразумевает встраивание датчика/электрода в трубопровод тем или иным способом. Ряд приборов МАРК имеет специальные модификации для работы в условиях повышенного давления.

В зависимости от способа контакта датчика/электрода со средой, в комплект поставки включаются дополнительные монтажные части для установки.

погружной

проточный

магистральный

Щитовой и настенный монтаж блока преобразовательного

Блок преобразовательный может крепиться либо на стену, либо в специальный щит для оборудования (свойственно объектам энергетики).

В зависимости от выбранного способа монтажа меняется конструкция блока преобразовательного.

Щитовой монтаж

Настенный монтаж

Градуировка, поверка, калибровка

Градуировка (шкалы) – операция, устанавливающая опорные точки в измерительном приборе, в результате чего обеспечивается соответствие заданной шкалы фактическим значениям измеряемого показателя. Применяется для регулярной самостоятельной подстройки приборов.

Поверка - совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и пригодности к применению средства измерений, подлежащих государственному метрологическому контролю и надзору. Применяется для анализаторов и иных измерителей.

Результаты поверки заверяются представителем аккредитованного органа, например, центра стандартизации и метрологии.

Все приборы производства ВЗОР поставляются с первичной поверкой Нижегородского ЦСМ.

В соответствии с Приказом № 1815 Минпромторга от 02.07.2015г, результаты поверки СИ удостоверяются знаком поверки и/или свидетельством о поверке, и/или записью в паспорте СИ, заверенной подписью поверителя и знаком поверки. В случаях, когда требуется Свидетельство о поверке отдельным документом, этот факт следует указывать при заказе.

Калибровка – то же, что и поверка, только для средств измерений и их частей, не подлежащих государственному метрологическому контролю и надзору. Осуществляется производителем

или пользователем самостоятельно. Применяется также для отдельных частей анализаторов и иных измерителей (датчиков, блоков датчиков).

Результаты калибровки заверяются организацией, эту калибровку производящей.

Термокомпенсация

Метод **уменьшения заранее известной температурной зависимости** показаний датчика с использованием показаний термометра, измеряющего температуру среды.

Поскольку значения большинства измеряемых параметров водных сред зависят от температуры, то для исключения влияния данного фактора и применяется термокомпенсация.

Приведение к 25°С

Это функция, приводящая полученное значение измеряемого параметра при реальной температуре к значению, которое было бы получено при температуре среды в 25 °C.

Данная функция требуется для объектов энергетики, поскольку они используют нормативы, задающие значения измеряемых параметров именно при 25 °C.

Автоматическое приведение к 25 $^{\circ}$ С используется только для чистых сред (с электропроводностью не более 3 мкСм/см), для остальных сред следует проводить измерения при температуре, близкой к 25 $^{\circ}$ С.

«Сверхчистые» воды

«Сверхчистой» можно считать воду с электропроводностью менее 2,0 мкСм/см.

Подобная степень очистки достижима на объектах энергетики. Измерения в подобных средах следует проводить исключительно проточным или магистральным способом, чтобы исключить растворение в воде газообразных веществ из воздуха.